On the Phenomenon of Drifting Subpulses

Dipanjan Mitra
Visiting at Univ. Of Vermont
From: NCRA, TIFR

The Phenomenon

The Phenomenon

Analysis Methods

Background

- Discovered by Drake & Craft (1968) and intial characterization done by Backer (1970, 1973).
- Ruderman & Sutherland (1975) proposed EXB drift to explain drifting.
- Few Major population studies:
- Rankin (1986): Finds drifting phenomenon is related to pulsar geometry

Weltevrede (2006, 2007): Finds around 35 % of pulsar population show drifting (using Westerbock radio telescope)

- Major Individual pulse studies: Deshpande & Rankin (2000), Van Leewen et al. (2003), Smits et al. (2006)
- Here we will discuss results from a recent data set of pulsars from GMRT:
- Rahul Basu, D. Mitra, G. Melikidze, G, K Maciesiak, A Skrzypczak,
 A. Szary (2016)

<u>Meterwavelength Single-Pulse Polarimetric</u> <u>Emission Survey (MSPES)</u>

Single pulse observations of 123 pulsars at 333 and 610 Mhz in the declination range +25 deg to -50 deg.

46 % pulsars showed drifting ! 22 new drifting pulsars were found.

PMD: Positive Modulation Drift

NMD: Negative Modulation Drift

Distribution of drifting pulsars with Spindown energy

CONAL DOUBLES
CONAL SINGLES
MULTIPLE

Drifting subpulses as $(\Delta E X B)$ drift

- Formation of an inner accelerating region
- Creation of localized spark associated plasma flow
- Lack of corotation leads to the drifting phenomenon

IN THIS MODEL $P_3 = 1/f_3$ IS THE TIME TAKEN FOR A SPARK TO REPEAT IN THE SAME LONGITUDE

Alias Problem

Drifting Type	1^{st} alias $(P_3 > 2P)$	2^{nd} alias $(P_3 < 2P)$
positive slope Drifting (PSD)	subpulse from trailing to leading edge	subpulse from leading to trailing edge
negative slope Drifting (NSD)	subpulse from leading to trailing edge	subpulse from trailing to leading edge
Amplitude Modulation (AMD)	line of sight at lower part of subpulse	line of sight at upper part of subpulse

The pulsar rotation direction is from the leading to the trailing edge.

A possible resolution: Plasma lags behind rotation

Expalining this using Partially Screened Vacuum Gap model (e.g. Gil, Geppert, Melikidze 2003)

Emission Geometry and Drifting

The Case of PSR B0943+10

Explained by EXB drift of plasma (RS75)

(e.g. Deshpande and Rankin 1999, Gil & Sendyk 2000, Asgekar Deshpande Backus Mitra Rankin 2012)

Evolution in B-mode

(Rankin & Suleymanova 2006, Suleymanova & Rankin 2009, Bilous et al. 2014 Backus Mitra Rankin 2012)

Mode changing

Xray/Radio emission

Evidence for Inner accelerating region

$$A = rac{L_{xray}^{bb}}{\sigma \ T^4}$$

$$B_s = \frac{A_d}{A} B_d$$

XMM and Chandra playing crucial role

Special cases: Interpulsars

PSR B1822-09

PSR B 1702-19

Weltevrede, Wright Stappers (2007)

(Backus, Mitra, Rankin 2012)

Special Case: Bi-drifting

PSR J0815+09

McLaughlin et al. 2004, Discovery in Arecibo Drift Scan

Special case: B1946+35! A core triple

Mitra & Rankin (2016)

Periodic Moding? PSR B1946+35

Finally!

- There is both order and complexity in drifting phenomenon.
- Tray / Radio observations together is giving us more clues about the inner magnetosphere.
- What causes the phenomenon of drifting, mode changing and nulling is still unclear....

Thank you!